Why News Summarization Matters in 2025
With 65% of professionals reporting information overload, automated news summarization solves critical challenges:
-
Reduces reading time by 70% through AI-powered compression -
Automatically categorizes articles into 8+ domains (Technology, Health, Sports, etc.) -
Supports real-time updates from 300+ global news sources -
Enables API integration for enterprise workflows
Technical Architecture Deep Dive
Dual-Module System Design
-
Streamlit Frontend (Python-based): -
Keyword search with semantic understanding -
Direct URL input validation -
Batch processing capability
-
-
FastAPI Backend (RESTful API): -
Asynchronous task handling -
Model pipeline orchestration -
Redis caching integration
-
Core Processing Workflow
# Sample code from RAG_News_NB.ipynb
def generate_summary(input):
if input_type == 'url':
content = web_scraper(input)
else:
content = news_retriever(keywords=input)
processed_text = text_cleaner(content)
category = bert_classifier(processed_text)
summary = pegasus_summarizer(processed_text)
chromadb.store(category, summary)
return {'category': category, 'summary': summary}
Step-by-Step Implementation Guide
Local Development Setup
# Clone repository
git clone https://github.com/Abdelrahman-Elshahed/News_Summerization_Using_RAG--Graduation_Project_DEPI.git
cd News_Summerization_Using_RAG--Graduation_Project_DEPI
# Create virtual environment
python -m venv venv
source venv/bin/activate # Windows: venv\Scripts\activate
# Install dependencies
pip install -r requirements.txt
Running Services
-
Launch Streamlit Frontend (Port 8501):
streamlit run APP-Streamlit.py
-
Start FastAPI Backend (Port 8000):
uvicorn APP-FastAPI:app --reload
Production Deployment Strategies
Docker Containerization
# Optimized Dockerfile
FROM python:3.9-slim-buster
WORKDIR /app
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
COPY . .
EXPOSE 8000
CMD ["uvicorn", "APP-FastAPI:app", "--host", "0.0.0.0"]
Build and run commands:
docker build -t news_summarizer .
docker run -p 8000:8000 news_summarizer
MLflow Model Monitoring
Key tracking features:
-
ROUGE/L scores for summary quality -
Model inference latency -
Error rate analysis -
API request statistics
Core NLP Components
Text Processing Pipeline
-
Content Cleaner:
-
Ad removal using DOM analysis -
Multi-language support -
Readability scoring
-
-
Classification Engine:
-
Fine-tuned BERT-base model -
Dynamic category learning -
Confidence thresholding
-
-
Summarization Module:
-
PEGASUS-large pre-trained model -
Context-aware compression -
Named entity preservation
-
Retrieval-Augmented Generation (RAG)
-
Semantic vector indexing -
Hybrid search (keyword + vector) -
Cache warming system -
Incremental data updates
Performance Benchmarks
Speed Comparison
Request Type | v1.0 | v2.0 (Optimized) |
---|---|---|
Keyword Search | 2.1s | 0.9s |
URL Processing | 1.7s | 0.8s |
Batch Mode (10 articles) | 8.9s | 3.7s |
Memory Optimization
-
On-demand model loading -
TensorRT acceleration -
Garbage collection tuning -
GPU memory pooling
Real-World Applications
-
Media Monitoring: Track brand mentions across news outlets -
Academic Research: Create literature review databases -
Financial Analysis: Monitor market-moving events -
Content Curation: Power personalized news feeds
Security & Compliance
-
End-to-end HTTPS encryption -
GDPR-compliant data handling -
Regular security audits -
Role-based access control
Extension Capabilities
-
Custom model plugins -
Multi-language summarization -
Social media integration -
Automated report generation
Roadmap Highlights
-
Q3 2024: Audio/video summarization -
Q4 2024: Personalized recommendation engine -
Q1 2025: Edge computing deployment
Get Started Today
Clone the repository containing:
-
Pre-trained model weights -
Sample dataset -
Postman API collection -
Load testing scripts
git clone https://github.com/Abdelrahman-Elshahed/News_Summerization_Using_RAG--Graduation_Project_DEPI.git