News Summarization App Interface
News Summarization App Interface

Why News Summarization Matters in 2025

With 65% of professionals reporting information overload, automated news summarization solves critical challenges:

  • Reduces reading time by 70% through AI-powered compression
  • Automatically categorizes articles into 8+ domains (Technology, Health, Sports, etc.)
  • Supports real-time updates from 300+ global news sources
  • Enables API integration for enterprise workflows

Technical Architecture Deep Dive

Dual-Module System Design

System Architecture Diagram
System Architecture Diagram
  • Streamlit Frontend (Python-based):

    • Keyword search with semantic understanding
    • Direct URL input validation
    • Batch processing capability
  • FastAPI Backend (RESTful API):

    • Asynchronous task handling
    • Model pipeline orchestration
    • Redis caching integration

Core Processing Workflow

# Sample code from RAG_News_NB.ipynb
def generate_summary(input):
    if input_type == 'url':
        content = web_scraper(input)
    else:
        content = news_retriever(keywords=input)
    
    processed_text = text_cleaner(content)
    category = bert_classifier(processed_text)
    summary = pegasus_summarizer(processed_text)
    chromadb.store(category, summary)
    return {'category': category, 'summary': summary}

Step-by-Step Implementation Guide

Local Development Setup

# Clone repository
git clone https://github.com/Abdelrahman-Elshahed/News_Summerization_Using_RAG--Graduation_Project_DEPI.git
cd News_Summerization_Using_RAG--Graduation_Project_DEPI

# Create virtual environment
python -m venv venv
source venv/bin/activate  # Windows: venv\Scripts\activate

# Install dependencies
pip install -r requirements.txt

Running Services

  1. Launch Streamlit Frontend (Port 8501):
streamlit run APP-Streamlit.py
  1. Start FastAPI Backend (Port 8000):
uvicorn APP-FastAPI:app --reload
Service Deployment Screenshot
Service Deployment Screenshot

Production Deployment Strategies

Docker Containerization

# Optimized Dockerfile
FROM python:3.9-slim-buster
WORKDIR /app
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
COPY . .
EXPOSE 8000
CMD ["uvicorn""APP-FastAPI:app""--host""0.0.0.0"]

Build and run commands:

docker build -t news_summarizer .
docker run -p 8000:8000 news_summarizer

MLflow Model Monitoring

MLflow Dashboard
Key tracking features:

  • ROUGE/L scores for summary quality
  • Model inference latency
  • Error rate analysis
  • API request statistics

Core NLP Components

Text Processing Pipeline

  1. Content Cleaner:

    • Ad removal using DOM analysis
    • Multi-language support
    • Readability scoring
  2. Classification Engine:

    • Fine-tuned BERT-base model
    • Dynamic category learning
    • Confidence thresholding
  3. Summarization Module:

    • PEGASUS-large pre-trained model
    • Context-aware compression
    • Named entity preservation

Retrieval-Augmented Generation (RAG)

ChromaDB Integration
ChromaDB Integration
  • Semantic vector indexing
  • Hybrid search (keyword + vector)
  • Cache warming system
  • Incremental data updates

Performance Benchmarks

Speed Comparison

Request Type v1.0 v2.0 (Optimized)
Keyword Search 2.1s 0.9s
URL Processing 1.7s 0.8s
Batch Mode (10 articles) 8.9s 3.7s

Memory Optimization

  • On-demand model loading
  • TensorRT acceleration
  • Garbage collection tuning
  • GPU memory pooling

Real-World Applications

  1. Media Monitoring: Track brand mentions across news outlets
  2. Academic Research: Create literature review databases
  3. Financial Analysis: Monitor market-moving events
  4. Content Curation: Power personalized news feeds

Security & Compliance

  • End-to-end HTTPS encryption
  • GDPR-compliant data handling
  • Regular security audits
  • Role-based access control

Extension Capabilities

  • Custom model plugins
  • Multi-language summarization
  • Social media integration
  • Automated report generation
System Extension Architecture
System Extension Architecture

Roadmap Highlights

  • Q3 2024: Audio/video summarization
  • Q4 2024: Personalized recommendation engine
  • Q1 2025: Edge computing deployment

Get Started Today

Clone the repository containing:

  • Pre-trained model weights
  • Sample dataset
  • Postman API collection
  • Load testing scripts
git clone https://github.com/Abdelrahman-Elshahed/News_Summerization_Using_RAG--Graduation_Project_DEPI.git
Full System Demo
Full System Demo