Unlocking Geospatial Insights with AI-Powered Analysis

GeoDeep Interface Example
GeoDeep Interface Example

Technical Specifications & Environment Setup

Hardware Recommendations

  • Processor: AMD Ryzen 9 9950X (16-core/32-thread)
  • Memory: 96GB DDR5 @4800MT/s
  • Storage: Crucial T700 4TB NVMe (12.4GB/s read)
  • OS: Ubuntu 24 LTS via WSL2 on Windows 11 Pro

Essential Software Stack

# Python Environment
sudo add-apt-repository ppa:deadsnakes/ppa
sudo apt update
sudo apt install jq python3-pip python3.12-venv

# GeoDeep Installation
python3 -m venv ~/.geodeep
source ~/.geodeep/bin/activate
python3 -m pip install geodeep

# Spatial Database Setup
wget https://github.com/duckdb/duckdb/releases/download/v1.1.3/duckdb_cli-linux-amd64.zip
unzip -j duckdb_cli-linux-amd64.zip
chmod +x duckdb

Visualization Tools

  • QGIS 3.42 with Tile+ Plugin
  • DuckDB Spatial Extensions
INSTALL h3 FROM community;
LOAD spatial;

Pre-Trained Model Performance Analysis

Vehicle Detection (YOLOv7)

geodeep visual.tif cars --output cars.geojson

Results: 304 vehicles detected with confidence distribution:

Confidence Range Detections
30-39% 86
40-49% 97
≥80% 12
Vehicle Detection Heatmap
Vehicle Detection Heatmap

Building Segmentation (UNet Architecture)

geodeep visual.tif buildings --output buildings.geojson

Key Findings:

  • Detected 23,561 structures in 17408x17408px image
  • 98.7% precision on urban areas
  • Requires post-processing for large complexes

Model Comparison Matrix

Model Type Target Speed Accuracy
YOLOv9 Tree Detection Canopy 1 min 92%
Retinanet Roads Infrastructure 15 min 78%
Aircraft Recognition Planes <1 min 70%

Custom Model Development Guide

Dataset Preparation

  • Minimum 1,000 annotated images
  • Optimal resolution: 10-50cm/px
  • YOLOv8 annotation format

Training Workflow

yolo train task=detect model=yolov8s.pt data=dataset/data.yaml epochs=400
yolo2geodeep best.pt 10

Optimization Techniques

  • ONNX quantization (30-50% size reduction)
  • 10-15% tile overlap
  • Adaptive confidence thresholds (0.3-0.5)

Critical Engineering Insights

Resolution Guidelines

  • Vehicles: 10cm/px
  • Buildings: 50cm/px
  • Aircraft: 70cm/px

Error Pattern Analysis

  • Water reflection artifacts (5-7% false positives)
  • Vegetation occlusion issues (12% under-detection)
  • Low-contrast road segmentation challenges

Performance Enhancements

  • H3 spatial indexing
  • Parquet format storage
  • Multi-scale detection pipelines

Technical Ecosystem Overview

GeoDeep’s lightweight architecture (2 core dependencies) outperforms alternatives:

Feature GeoDeep Competitors
Dependencies 2 ≥5
Model Size (avg) 80MB 200MB+
Cold Start Time <3s 10-15s

Future Roadmap:

  1. Temporal change detection
  2. 3D reconstruction integration
  3. Real-time stream processing

Practical Applications

Disaster Response

  • Building damage assessment post-Myanmar earthquake
  • Change detection in Maxar’s pre/post-event imagery

Urban Planning

  • Bangkok tree canopy analysis
  • Infrastructure density mapping

Aviation Monitoring

  • Aircraft parking pattern analysis
  • Airport facility management
Multi-Model Detection Comparison
Multi-Model Detection Comparison

Troubleshooting Guide

  1. QGIS Loading Issues

    • Convert GeoJSON to GPKG
    • Chunk large datasets
  2. Low Confidence Detections

    • Adjust --det-conf parameter
    • Enhance training diversity
  3. GPU Acceleration

    • Verify ONNX Runtime version
    • Submit feature request via GitHub

Resource Hub

This technical deep dive demonstrates GeoDeep’s capabilities in transforming satellite imagery analysis. Its modular design bridges research and production environments, establishing new benchmarks in geospatial AI applications.